C	Questi	ion	er		Guidance	
1	1 (a)		2NaOH + Cl ₂ \rightarrow NaClO + NaCl + H ₂ O \checkmark	1	ALLOW NaOCI	
	~~/				IGNORE state symbols	
	(b)	(i)	Sodium chlorate(V) ✓	1	ALLOW sodium chlorate V	
		.,			DO NOT ALLOW sodium chlorate 5	
		(ii)			USE annotations with ticks, crosses, con, ECF, etc for this part.	
			CI in NaClO ₃ is (+)5 AND CI in NaClO ₄ is (+)7 AND CI in NaCl is $-1 \checkmark$	1	ALLOW 5+, 7+ 1– Look for oxidation numbers seen above equation. DO NOT ALLOW CI [–] in NaCI	
			Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased ✓	1	The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW CI for 'chlorine' DO NOT ALLOW CI ₂ for 'chlorine'	
			Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to $-1 \checkmark$ (These points would secure marking points 2 and 3) 4NaClO ₃ \rightarrow 3NaClO ₄ + NaCl $\frac{+5}{-1}$ This diagram gets all 3 marks	1	 ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form NaClO₄' ALLOW 1 mark for 'chlorine is reduced to form NaCl' ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned 	
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous ✓	1	ALLOW CH ₃ Cl for 'chlorinated hydrocarbons' IGNORE 'harmful' IGNORE 'carcinogenic' for chlorine	
			(Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' ✓	1	DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'	

	Quest	tion	er	Mark	Guidance
1	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of CH ₃ Cl AND lone pairs correct on Cl ✓	1	Must be 'dot-and cross' ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron ✓	1	
	(d)		Add AgNO ₃ (aq) OR Ag ⁺ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq) seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark
			White precipitate ✓	1	White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate
			$Ag^+ + CI^- \rightarrow AgCI \checkmark$	1	IGNORE states
			Add dilute NH_3 and precipitate (completely) dissolves OR disappears \checkmark	1	DO NOT ALLOW conc. NH ₃ DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add Cl ₂ (aq)' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

(Questi	ion	Expected Answers	Marks	Additional Guidance	
2	(a)	(i)	Potassium AND argon ✓	1	ALLOW K and Ar	
		(ii)	They are arranged in increasing atomic number OR Neither would show properties OR trends of rest of group OR Neither would show properties OR trends of rest of period OR They are arranged by electron configuration ✓	1	ALLOW any correct property difference e.g. This would place a reactive metal in the same group as noble gases ALLOW they do not fit in with the rest of the group	
	(b)	(i)	$2Mg + O_2 \rightarrow 2MgO \checkmark$	1	ALLOW multiples. Correct species must be seen IGNORE state symbols	
		(ii)	 Fizzes OR bubbles OR gas produced OR effervescing ✓ Mg dissolves OR Mg disappears OR a solution is formed ✓ 	2	DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' ALLOW 'it for Mg' IGNORE Mg reacts IGNORE temperature change IGNORE steam produced	
		(iii)	Quicker OR more vigorous OR gets hotter	1	 MUST be a comparison of a reaction observation, not just 'more reactive' ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced 	

Question	Expected Answers	Marks	Additional Guidance
(c)	Mg has a giant structure ✓	6	
	Mg has metallic bonding OR description of metallic bonding as positive ions and delocalised electrons ✓		Metallic OR delocalised seen spelt correctly at least ONCE
	(There is electrostatic attraction between) positive ions and electrons ✓		DO NOT ALLOW as label nuclei OR protons for positive ions
			ALLOW labelled diagram of metallic bonding for second and third marks
			positive ions delocalised electrons Lattice must have at least two rows of positive ions. If a Mg ion is shown it must correct charge ALLOW for labels:+ ions, positive ions, cations DO NOT ALLOW as label nuclei OR protons for positive ions ALLOW e' or e as label for electron DO NOT ALLOW '' without label for electron
	Cl has a simple molecular OR simple covalent (lattice) \checkmark		Covalent OR molecule OR molecular seen spelt correctly at least ONCE
			ALLOW CI is a (covalent) molecule
	Cl has van der Waals' forces (between molecules) OR Cl has instantaneous dipole–induced dipoles OR temporary dipole–temporary dipole ✓		IGNORE CI has intermolecular bonding

		van der Waals' forces are weak and metallic bonds are strong OR van der Waals' forces are weak er than metallic bonds OR Less energy is needed to overcome van der Waals' than metallic bonds ✓		 ALLOW ECF from incorrect descriptions of giant structure with strong bonds; e.g. Mg has giant ionic structure ALLOW ECF from any incorrect intermolecular forces e.g. permanent dipole –dipole from marking point 5 ALLOW vdW easier to break ORA
(d)	(i)	O goes from -2 to 0 ✓ N goes from +5 to +4 ✓ N is reduced AND O is oxidised ✓	3	Oxidation numbers may be seen with equation Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this IGNORE references to strontium IGNORE references to electron loss OR gain DO NOT ALLOW 'One increases and one decreases'

(d)	(ii)	Calculates correctly: Mol of $Sr(NO_3)_2 = \frac{5.29}{211.6} = 0.0250 \checkmark$ Calculates correctly: Mol of gas = $5/2 \times 0.0250 = 0.0625 \checkmark$ Calculates correctly: Volume of gas = $24.0 \times 0.0625 = 1.50 \text{ dm}^3 \checkmark$	3	 ALLOW 0.025 ALLOW ECF for first answer × 2.5 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes ALLOW ECF for second answer × 24(.0) as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes DO NOT ALLOW ECF of first answer × 24(.0) (which gives 0.6(0) dm³) as this has not measured the volume of any gas, simply 0.0250 mol of solid Sr(NO₃)₂ converted into a gas i.e. This answer would give one mark ALLOW 1.5 dm³
				DO NOT ALLOW ECF of first answer × 24(.0) (which gives 0.6(0) dm ³) as this has not measured the volume of any gas, simply 0.0250 mol of solid Sr(NO ₃) ₂ converted into a gas
				ALLOW ECF producing correct volume of NO ₂ only i.e. 1.2(0) dm ³ would give two marks
				OR ALLOW ECF producing correct volume of O_2 only i.e. 0.3(0) dm ³ would give two marks
		Total	18	

Qu	esti	ion	Expected Answers	Marks	Additional Guidance	
3	а	i	a shared pair of electrons ✓	1	ALLOW any response that communicates electron pair ALLOW shared pairs	
		ii		1	Must be ' <i>dot-and-cross</i> ' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of N do not need to be shown as a pair.	
		iii	Shape: pyramidal OR (trigonal) pyramid ✓ Explanation: There are 3 bonded pairs and 1 lone pair ✓ Lone pairs repel more than bonded pairs ✓	3	ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair	
	b	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓	1	ALLOW subscripts	
		II	+ H H H H H H H H H H H H H	1	IGNORE inner shells IGNORE '+' sign BUT a DO NOT ALLOW '' sign. Brackets and circles not required	

Question	Expected Answers	Marks	Additional Guidance
iii	tetrahedral ✓ 109.5° ✓	2	ALLOW 109–110°
iv	ions OR electrons cannot move in a solid ✓ ions can move OR are mobile in solution ✓	2	ALLOW ions can move in liquid DO NOT ALLOW ions can move when molten ALLOW 1 mark for: 'lons can only move in solution'
C i	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \checkmark$	1	ALLOW $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$ ALLOW $NH_3 + H^+ \rightarrow NH_4^+$ ALLOW any correct multipleIGNORE state symbols
ii	when the H ⁺ in an acid is replaced by a metal ion OR an ammonium ion OR a + ion \checkmark	1	ALLOW H for H ⁺ ; ALLOW 'metal' for 'metal ion i.e.: H in an acid can be replaced by a metal
	accepts a proton OR accepts H ⁺ ✓	1	ALLOW donates a lone pair ALLOW removes H ⁺ ALLOW forms OH ⁻ ions
iv	132.1 ✓	1	IGNORE units NO OTHER ACCEPTABLE ANSWER
	Total	15	